Serveur d'exploration Nissiros

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Significance of crustal and source region processes on the evolution of compositionally similar calc-alkaline lavas, Mt. Hood, Oregon

Identifieur interne : 000279 ( Main/Exploration ); précédent : 000278; suivant : 000280

Significance of crustal and source region processes on the evolution of compositionally similar calc-alkaline lavas, Mt. Hood, Oregon

Auteurs : J. W. Cribb [États-Unis] ; M. Barton [États-Unis]

Source :

RBID : ISTEX:626EC7D833409F4BD38AB73EE34DB042C7FECE68

Descripteurs français

English descriptors

Abstract

Abstract: Mt. Hood, Oregon, in the Cascade Range volcanic arc has erupted predominantly andesite lava and pyroclastic-flow deposits over the last 700,000 years. Most lavas belong to the medium-K, calc-alkaline series and show a restricted range of composition (53–63 wt.% SiO2). Least-squares mixing calculations show that fractional crystallization of observed phenocryst phases can account for most major-oxide variation displayed by Mt. Hood lavas. AFC modeling indicates that small amounts of assimilation (Ma/Mc = 0.1–0.15) of high-K2O crustal rock occurred during certain eruptive episodes, but did not have a significant effect on magma composition. Evidence of magma mixing (partially resorbed olivine, plagioclase and pyroxene phenocrysts, magmatic inclusions) is found in lavas erupted throughout the volcano's history. Trace-element mixing calculations indicate that repeated cycles of mixing resulted in the eruption of compositionally similar lavas throughout the history of the volcano. Mt. Hood lavas are unusual in that they do not exhibit depletion of high field strength elements (HFSE) relative to large ion lithophile elements (LILE). Depletion of HFSE relative to LILE is considered a common geochemical characteristic of arc lavas, and is usually attributed to modification of the upper mantle source region by interaction with slab-derived fluids. Calculations of pre-eruptive water contents using an H2O-dependent plagioclase thermometer indicate that Mt. Hood lavas contained up to 6 wt.% H2O prior to eruption. Therefore, the absence of HFSE depletions relative to LILE cannot be attributed to lack of interaction between slab-derived fluids and the source region. An alternate source of such depletions in arc magmas is subducted sediment. Both pelagic and continental margin sediments potentially subducted along the Cascades trench do exhibit depletion in certain HFSE (Nb, Zr) relative to LILE. The absence of HFSE depletions in lavas erupted at Mt. Hood, therefore, appears to reflect negligible subduction of sediment and/or negligible mixing between subducted sediment and the upper mantle source region.

Url:
DOI: 10.1016/S0377-0273(96)00077-7


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Significance of crustal and source region processes on the evolution of compositionally similar calc-alkaline lavas, Mt. Hood, Oregon</title>
<author>
<name sortKey="Cribb, J W" sort="Cribb, J W" uniqKey="Cribb J" first="J. W." last="Cribb">J. W. Cribb</name>
</author>
<author>
<name sortKey="Barton, M" sort="Barton, M" uniqKey="Barton M" first="M." last="Barton">M. Barton</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:626EC7D833409F4BD38AB73EE34DB042C7FECE68</idno>
<date when="1997" year="1997">1997</date>
<idno type="doi">10.1016/S0377-0273(96)00077-7</idno>
<idno type="url">https://api.istex.fr/document/626EC7D833409F4BD38AB73EE34DB042C7FECE68/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000339</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">000339</idno>
<idno type="wicri:Area/Istex/Curation">000339</idno>
<idno type="wicri:Area/Istex/Checkpoint">000216</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000216</idno>
<idno type="wicri:doubleKey">0377-0273:1997:Cribb J:significance:of:crustal</idno>
<idno type="wicri:Area/Main/Merge">000285</idno>
<idno type="wicri:Area/Main/Curation">000279</idno>
<idno type="wicri:Area/Main/Exploration">000279</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Significance of crustal and source region processes on the evolution of compositionally similar calc-alkaline lavas, Mt. Hood, Oregon</title>
<author>
<name sortKey="Cribb, J W" sort="Cribb, J W" uniqKey="Cribb J" first="J. W." last="Cribb">J. W. Cribb</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geography and Geology, Middle Tennessee State University, Murfreesboro, TN 37132</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Barton, M" sort="Barton, M" uniqKey="Barton M" first="M." last="Barton">M. Barton</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Geological Sciences, The Ohio State University, Columbus, OH 43210</wicri:regionArea>
<placeName>
<region type="state">Ohio</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Volcanology and Geothermal Research</title>
<title level="j" type="abbrev">VOLGEO</title>
<idno type="ISSN">0377-0273</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1997">1997</date>
<biblScope unit="volume">76</biblScope>
<biblScope unit="issue">3–4</biblScope>
<biblScope unit="page" from="229">229</biblScope>
<biblScope unit="page" to="249">249</biblScope>
</imprint>
<idno type="ISSN">0377-0273</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0377-0273</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Accessory phase</term>
<term>Amphibole</term>
<term>Analytical uncertainty</term>
<term>Andesite</term>
<term>Andesite lava</term>
<term>Andesitic</term>
<term>Andesitic magmas</term>
<term>Apatite</term>
<term>Aqueous fluids</term>
<term>Barton journal</term>
<term>Basalt</term>
<term>Basaltic</term>
<term>Basaltic andesites</term>
<term>Calc</term>
<term>Cascade</term>
<term>Cascade range</term>
<term>Cenozoic</term>
<term>Classification scheme</term>
<term>Clinopyroxene</term>
<term>Compatible elements</term>
<term>Compositional zoning</term>
<term>Compositionally</term>
<term>Contrib</term>
<term>Crater lake</term>
<term>Cribb</term>
<term>Crust</term>
<term>Crustal</term>
<term>Crustal assimilation</term>
<term>Crystallization</term>
<term>Earth planet</term>
<term>Eruptive</term>
<term>Eruptive period</term>
<term>Fractional</term>
<term>Fractional crystallization</term>
<term>Fractionation</term>
<term>Fractionation models</term>
<term>Geochemical</term>
<term>Geochemical characteristics</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geothennal research</term>
<term>Geothermal</term>
<term>Geothermal research</term>
<term>Groundmass</term>
<term>Hfse</term>
<term>High field strength elements</term>
<term>Hood</term>
<term>Hood lavas</term>
<term>Incompatible</term>
<term>Incompatible elements</term>
<term>Lava</term>
<term>Leeman</term>
<term>Lile</term>
<term>Lithophile elements</term>
<term>Mafic</term>
<term>Mafic magmas</term>
<term>Magma</term>
<term>Magma genesis</term>
<term>Magma source region</term>
<term>Magmatic</term>
<term>Magmatic inclusions</term>
<term>Maid lavas</term>
<term>Maid period</term>
<term>Main stage</term>
<term>Main stage andesites</term>
<term>Main stage cloud</term>
<term>Main stage period</term>
<term>Mantle wedge</term>
<term>Mass balance calculations</term>
<term>Medicine lake volcano</term>
<term>Mineral compositions</term>
<term>Mt. Hood</term>
<term>Normal zoning</term>
<term>Olivine</term>
<term>Orthopyroxene</term>
<term>Parental magmas</term>
<term>Pelagic</term>
<term>Pelagic sediments</term>
<term>Petrol</term>
<term>Phenocryst</term>
<term>Phenocryst phases</term>
<term>Phenocrysts</term>
<term>Plag</term>
<term>Plagioclase</term>
<term>Plagioclase phenocrysts</term>
<term>Plagioclase thermometer</term>
<term>Polallie</term>
<term>Polallie lavas</term>
<term>Polallie period</term>
<term>Polallie periods</term>
<term>Possible explanation</term>
<term>Pyroclastic deposits</term>
<term>Pyroxene</term>
<term>Resorbed</term>
<term>Resorbed margins</term>
<term>Resorbed olivine</term>
<term>Sediment</term>
<term>Small amounts</term>
<term>Source region</term>
<term>Southern washington</term>
<term>Subducted</term>
<term>Subducted sediment</term>
<term>Subducted slab</term>
<term>Subduction</term>
<term>Such depletions</term>
<term>Timberline</term>
<term>Timberline lavas</term>
<term>Timberline period</term>
<term>Upper mantle source region</term>
<term>Volcanism</term>
<term>Volcano</term>
<term>Volcanology</term>
<term>Water contents</term>
<term>calc-alkaline magmas</term>
<term>crustal assimilation</term>
<term>fractional crystallization</term>
<term>high field strength elements</term>
<term>magma mixing</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Accessory phase</term>
<term>Amphibole</term>
<term>Analytical uncertainty</term>
<term>Andesite</term>
<term>Andesite lava</term>
<term>Andesitic</term>
<term>Andesitic magmas</term>
<term>Apatite</term>
<term>Aqueous fluids</term>
<term>Barton journal</term>
<term>Basalt</term>
<term>Basaltic</term>
<term>Basaltic andesites</term>
<term>Calc</term>
<term>Cascade</term>
<term>Cascade range</term>
<term>Cenozoic</term>
<term>Classification scheme</term>
<term>Clinopyroxene</term>
<term>Compatible elements</term>
<term>Compositional zoning</term>
<term>Compositionally</term>
<term>Contrib</term>
<term>Crater lake</term>
<term>Cribb</term>
<term>Crust</term>
<term>Crustal</term>
<term>Crustal assimilation</term>
<term>Crystallization</term>
<term>Earth planet</term>
<term>Eruptive</term>
<term>Eruptive period</term>
<term>Fractional</term>
<term>Fractional crystallization</term>
<term>Fractionation</term>
<term>Fractionation models</term>
<term>Geochemical</term>
<term>Geochemical characteristics</term>
<term>Geol</term>
<term>Geophys</term>
<term>Geothennal research</term>
<term>Geothermal</term>
<term>Geothermal research</term>
<term>Groundmass</term>
<term>Hfse</term>
<term>High field strength elements</term>
<term>Hood</term>
<term>Hood lavas</term>
<term>Incompatible</term>
<term>Incompatible elements</term>
<term>Lava</term>
<term>Leeman</term>
<term>Lile</term>
<term>Lithophile elements</term>
<term>Mafic</term>
<term>Mafic magmas</term>
<term>Magma</term>
<term>Magma genesis</term>
<term>Magma source region</term>
<term>Magmatic</term>
<term>Magmatic inclusions</term>
<term>Maid lavas</term>
<term>Maid period</term>
<term>Main stage</term>
<term>Main stage andesites</term>
<term>Main stage cloud</term>
<term>Main stage period</term>
<term>Mantle wedge</term>
<term>Mass balance calculations</term>
<term>Medicine lake volcano</term>
<term>Mineral compositions</term>
<term>Normal zoning</term>
<term>Olivine</term>
<term>Orthopyroxene</term>
<term>Parental magmas</term>
<term>Pelagic</term>
<term>Pelagic sediments</term>
<term>Petrol</term>
<term>Phenocryst</term>
<term>Phenocryst phases</term>
<term>Phenocrysts</term>
<term>Plag</term>
<term>Plagioclase</term>
<term>Plagioclase phenocrysts</term>
<term>Plagioclase thermometer</term>
<term>Polallie</term>
<term>Polallie lavas</term>
<term>Polallie period</term>
<term>Polallie periods</term>
<term>Possible explanation</term>
<term>Pyroclastic deposits</term>
<term>Pyroxene</term>
<term>Resorbed</term>
<term>Resorbed margins</term>
<term>Resorbed olivine</term>
<term>Sediment</term>
<term>Small amounts</term>
<term>Source region</term>
<term>Southern washington</term>
<term>Subducted</term>
<term>Subducted sediment</term>
<term>Subducted slab</term>
<term>Subduction</term>
<term>Such depletions</term>
<term>Timberline</term>
<term>Timberline lavas</term>
<term>Timberline period</term>
<term>Upper mantle source region</term>
<term>Volcanism</term>
<term>Volcano</term>
<term>Volcanology</term>
<term>Water contents</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Essence</term>
<term>Volcanologie</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Mt. Hood, Oregon, in the Cascade Range volcanic arc has erupted predominantly andesite lava and pyroclastic-flow deposits over the last 700,000 years. Most lavas belong to the medium-K, calc-alkaline series and show a restricted range of composition (53–63 wt.% SiO2). Least-squares mixing calculations show that fractional crystallization of observed phenocryst phases can account for most major-oxide variation displayed by Mt. Hood lavas. AFC modeling indicates that small amounts of assimilation (Ma/Mc = 0.1–0.15) of high-K2O crustal rock occurred during certain eruptive episodes, but did not have a significant effect on magma composition. Evidence of magma mixing (partially resorbed olivine, plagioclase and pyroxene phenocrysts, magmatic inclusions) is found in lavas erupted throughout the volcano's history. Trace-element mixing calculations indicate that repeated cycles of mixing resulted in the eruption of compositionally similar lavas throughout the history of the volcano. Mt. Hood lavas are unusual in that they do not exhibit depletion of high field strength elements (HFSE) relative to large ion lithophile elements (LILE). Depletion of HFSE relative to LILE is considered a common geochemical characteristic of arc lavas, and is usually attributed to modification of the upper mantle source region by interaction with slab-derived fluids. Calculations of pre-eruptive water contents using an H2O-dependent plagioclase thermometer indicate that Mt. Hood lavas contained up to 6 wt.% H2O prior to eruption. Therefore, the absence of HFSE depletions relative to LILE cannot be attributed to lack of interaction between slab-derived fluids and the source region. An alternate source of such depletions in arc magmas is subducted sediment. Both pelagic and continental margin sediments potentially subducted along the Cascades trench do exhibit depletion in certain HFSE (Nb, Zr) relative to LILE. The absence of HFSE depletions in lavas erupted at Mt. Hood, therefore, appears to reflect negligible subduction of sediment and/or negligible mixing between subducted sediment and the upper mantle source region.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Ohio</li>
<li>Tennessee</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Cribb, J W" sort="Cribb, J W" uniqKey="Cribb J" first="J. W." last="Cribb">J. W. Cribb</name>
</region>
<name sortKey="Barton, M" sort="Barton, M" uniqKey="Barton M" first="M." last="Barton">M. Barton</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Terre/explor/NissirosV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000279 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000279 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Terre
   |area=    NissirosV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:626EC7D833409F4BD38AB73EE34DB042C7FECE68
   |texte=   Significance of crustal and source region processes on the evolution of compositionally similar calc-alkaline lavas, Mt. Hood, Oregon
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Jan 16 00:18:27 2018. Site generation: Mon Feb 1 22:09:13 2021